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We present a detailed study of the first simple mechanical system that shows
fully realistic transport behavior while still being exactly solvable at the level of
equilibrium statistical mechanics. The system under consideration is a Lorentz
gas with fixed freely-rotating circular scatterers interacting with point particles
via perfectly rough collisions. Upon imposing a temperature and/or a chemical
potential gradient, a stationary state is attained for which local thermal equilib-
rium holds for low values of the imposed gradients. Transport in this system is
normal, in the sense that the transport coefficients which characterize the flow
of heat and matter are finite in the thermodynamic limit. Moreover, the two
flows are non-trivially coupled, satisfying Onsager’s reciprocity relations to
within numerical accuracy as well as the Green–Kubo relations. We further
show numerically that an applied electric field causes the same currents as the
corresponding chemical potential gradient in first order of the applied field.
Puzzling discrepancies in higher order effects (Joule heating) are also observed.
Finally, the role of entropy production in this purely Hamiltonian system is
shortly discussed.

KEY WORDS: Transport laws; nonequilibrium steady states; Onsager symme-
try; Green–Kubo formalism; Lorentz gas; entropy production.

1. INTRODUCTION

One of the major motors of research in statistical physics has been the quest
to understand the link between macroscopic phenomena and the underly-
ing microscopic physics of a system. In particular, the origin of the macro-
scopic ‘‘laws’’ of thermodynamic transport is still one of the major
challenges to theoretical physics. These phenomenological laws are known
to describe accurately the processes of diffusion, heat conduction, viscosity



among a host of other phenomena, and are fundamental to the quantitative
description of macroscopic systems in general. However, the attempts to
link these macroscopic laws to the underlying microscopic dynamics have
not been conclusive thus far. From a mathematically rigorous point of
view, very few results have been obtained. (1) Indeed, to our knowledge, the
validity of Fourier’s law has been proven analytically only for a very speci-
fic model in the limit of infinite dilution with finite mean free path. (2, 3)

There have also been attempts to link transport phenomena to the chaotic
properties of the underlying classical dynamics; (4) and a connection
between the rate of entropy production and the rate of contraction of
phase space volume in thermostated (non Hamiltonian) systems has been
pointed out. (5–8)

Given this state of affairs, a common strategy is to propose and study
systems which reproduce, in numerical simulations, the phenomena under
consideration, and to attempt to determine how the physical ingredients of
these models give rise to the macroscopic behaviour. However, the systems
considered thus far have been either too complicated to shed much light
upon the problem, or have actually failed to reproduce the macroscopic
phenomenology. Attempts have been made, on one side, through the simu-
lation of realistic many-body systems satisfying a thermostated dynamics
(see for example ref. 9). These simulations have indeed been able to repro-
duce non-trivial transport phenomena. However, such studies do not
provide a detailed understanding of the microscopic processes involved due
to the excessive complexity of the system under study. The other numerical
approach involves the study of transport in ‘‘simple systems.’’ Examples of
these include: chains of anharmonic oscillators (10) and the so called ding-a-
ling and ding-dong models, (11, 12) among others. Of these, energy transport
in the chains was shown to be ‘‘anomalous.’’ This is an euphemism indi-
cating that energy transport cannot be described as a diffusive process and
currents do not scale with the gradients in the expected way. In contrast,
‘‘normal’’ transport indicates that even in the thermodynamic limit, trans-
port can accurately be described as a diffusive process and that the flux is
proportional to the gradient as stated, say, in Fourier’s law. The ding-a-
ling and ding-dong models, indeed do yield normal transport under certain
conditions; however, they include geometric constraints that make even
their equilibrium properties an extremely complicated affair. As we shall
see, the knowledge of such equilibrium properties is often useful, which is
why we consider it important to have a model where these are explicitly
known.

One particularly thorny problem in attempting to reproduce the phe-
nomenological laws of thermodynamic transport, is that these apply to
systems which are characterized by local thermodynamic equilibrium
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(LTE). (13, 14) That is, systems that are not in equilibrium, but for which the
intensive thermodynamic variables are well defined at each point of the
system, and the relations amongst these variables are the same as in equi-
librium thermodynamics. Thus, results have been obtained concerning
‘‘diffusive’’ (normal) energy transport in the Lorentz gas. (15) Yet this system
is not described by LTE. (16) It is therefore not clear what precise meaning
can be attached to the local temperature appearing in Fourier’s law in this
situation.

Under these circumstances, the minimal ingredients required in the
microscopic physics of a simple system to attain normal thermodynamic
transport in low dimensions are presently still under discussion. (1, 17, 18)

However, we believe that ideal candidate models should possess the
following features:

1. The microscopic physics should be defined in terms of reversible
Hamiltonian dynamics, since this is the nature of known fundamental pro-
cesses. In particular, reversible systems showing an average rate of phase
space contraction, while of considerable interest for simulating transport,
do not provide a fundamental microscopic model.

2. The equilibrium properties of the model should be well under-
stood.

3. When driven weakly out of equilibrium, they must be consistent
with the hypotheses of LTE and, of course, they must give rise to realistic
macroscopic transport.

In this work we present a detailed description and extensive simula-
tions of the equilibrium and transport properties of a simple reversible
Hamiltonian model system which we believe is an ideal candidate to begin
to unravel the puzzle of thermodynamic transport, possibly along the same
lines envisioned by Dorfman et al. (35) for the phenomenon of particle dif-
fusion (see also ref. 36). The first results concerning some of the transport
features of this model were presented in ref. 19. In Section 2, we present a
detailed description and discussion of the model. We show that its equilibrium
statistical mechanics is simply that of an ideal gas.

In order to carry out the equilibrium simulations, as well as to study
the transport properties of the model when the system is driven out of
equilibrium, it is necessary to couple the system to thermo-chemical baths.
We describe the model baths we have implemented to do this in Section 3.

In Section 4 we corroborate through simulations that the equilibrium
state of the system in the three canonical ensembles is indeed an ideal gas.
We also present numerical evidence to show that, when subjected to a weak
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temperature and/or chemical potential gradient, our systems reaches a non-
equilibrium steady state (NSS) which is characterized by LTE. In this
situation, our model supports both heat and matter flows. We show in
Section 5 that these flows are characterized by transport coefficients which
are independent of system size (that is, transport is normal), and that the
corresponding transport coefficients satisfy Onsager’s reciprocity relations.
The fact that the system is homogeneous in energy allows the prediction of
the dependence of the transport coefficients on the temperature. We also
establish numerically their dependence on the particle density and discuss
briefly the effects of subjecting the system to a magnetic field. In Section 6
we verify that the Green–Kubo formulas connecting transport coefficients
with time correlation functions apply for this system to within numerical
precision, and we compare the effect of an applied electric field with that
of an applied chemical potential gradient, which, to linear order, should
induce the same flows in the system. In Section 7 a brief discussion of the
applicability of microscopic interpretations of entropy production as motor
of transport in this system. Finally we present a brief summary and
mention how this model can be modified to study other physical transport
problems from a microscopic approach.

2. DEFINITION OF THE MODEL

In ref. 15, a Lorentz gas model with elastic collisions was used to study
heat transport in a quasi-one dimensional channel placed between two
thermal reservoirs at different nominal temperatures. While the results were
consistent with some sort of ‘‘diffusive’’ energy transport, identification
with Fourier’s law was unfounded: the system does not satisfy the hypoth-
esis of LTE and, therefore, one cannot define a local temperature, as was
shown in ref. 16. There, the authors argue that the system does not attain
LTE due to the existence of an infinite number (in the thermodynamic
limit) of conserved quantities in the dynamics. Indeed, the energy of each
particle is conserved throughout the evolution of the system. This, in turn,
implies a breakdown of ergodicity and the resulting process is closer to
‘‘colour’’ diffusion than to heat transport.

The model we study in this work, introduced in ref. 19, is a modifica-
tion to the usual Lorentz gas model in which the scatterers are allowed to
exchange energy with a set of (non-interacting) point particles of mass m
through the scattering events. The geometry we consider is that of a perio-
dic Lorentz gas in which the hard disc scatterers of radius R are fixed on a
triangular lattice, the details of which are discussed below. The possibility
of energy exchange is achieved as follows: each disc is a free rotator with
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a moment of inertia G, and scattering proceeds according to rules charac-
terizing ‘‘perfectly rough’’ collisions, that are reversible, conserve total
energy and angular momentum. These collision rules are given by the
following formulas, which relate the normal and tangential components of
the particle’s velocity v with respect to the disc’s surface, and the disc’s
angular velocity w before (unprimed quantities) and after (primed quantities)
the collision

v −

n= − vn

v −

t=vt −
2g

1+g
(vt − Rw) (1)

RwŒ=Rw+
2

1+g
(vt − Rw).

These rules define a deterministic, time-reversible, canonical trans-
formation at each collision. The parameter g, defined as the ratio between
the moment of inertia of the disc and the mass of the particle times the
square radius of the disc:

g=
G

mR2 , (2)

is the only relevant adimensional parameter characterizing the collision. It
determines the energy transfer between discs and particles in a collision.
For finite values of g, particles in the system may exchange energy among
each other through the discs, even though they do not interact directly.
This simple energy exchange mechanism overcomes the objections raised in
ref. 16 and permits the system to reach thermodynamical equilibrium, as
we will see in Section 4. As g Q 0, the rotational energy of the scatterers
becomes negligible and the collision becomes perfectly elastic, recovering
the dynamics of the usual Lorentz gas model. For g Q ., the energy of the
scatterers is unaffected by the collisions with the particles, and the angular
velocity of the scatterers remains constant. In this limit, once again, the
system does not equilibrate. Thus, in either limit, the energy-mediating
effect is suppressed and thermodynamical equilibrium is not reached. In the
following, unless the contrary is explicitly stated, we shall always be dealing
with the case g=1, since that is a value of g for which energy exchange,
and therefore equilibration, is quite efficient.

The geometric disposition of the scatterers in the systems we study in
this work is indicated in Fig. 1. The centers of the scatterers are fixed on a
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Fig. 1. Schematic illustration of the scatterer geometry: the scatterers are disposed on a
triangular array with finite horizon to avoid infinitely long trajectories. For motives of con-
venience, in this work the separation between scatterers has been set to the critical horizon.
Periodic boundary conditions are used in the vertical direction. To avoid spurious effects
arising from multiple consecutive scatterings of a particle off the same disc, we have put two
discs on each vertical. To study the dependence on system size, the length L of the sample is
varied. The quoted length is the number of discs.

triangular lattice, along a narrow channel of height 2W, where W is the
distance between the centers of the scatterers. For convenience, this
distance was chosen as W=4R/`3 (known in the literature as the critical
horizon), which is the largest separation for which a particle cannot travel
arbitrarily large distances without undergoing a collision. In this geometry,
a set of non-interacting point particles of mass m moves freely between
collisions with the hard discs. In the vertical direction the channel contains
two discs and periodic boundary conditions are imposed.

The fact that we put two discs in the vertical direction merits comment
as, in the simpler ‘‘single cell’’ geometry with periodic boundary conditions,
spurious effects may arise from multiple successive scatterings of one par-
ticle with the same disc. Some of these effects have been observed in ref. 21,
where the same set of collision equations has been used to model a deter-
ministic thermostat. We have verified that if one considers a system con-
sisting of one cell with periodic boundary conditions, containing a single
scatterer and a single particle, the resulting dynamics gives rise to regular
structures in the phase space of the particle. In this situation, the system
does not appear to be ergodic for arbitrary values of g. We also noted that,
if instead of periodic boundary conditions one considers specular reflec-
tions at the boundaries, the effect in the particle’s trajectory is a ‘‘rando-
mization’’ of the tangential component of the particle’s velocity in the next
collision with the disc, recovering a seemingly ergodic phase space. Though
we believe that the presence of other particles will destroy the regular
structures that appear in the single particle case, we decided to avoid the
possibility of multiple consecutive collisions of a particle with the same disc
by placing two discs in the vertical direction.
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A central aspect of this model is that its equilibrium properties are still
trivial, even though, strictly speaking, it is an interacting many particle
system. Indeed, in spite of the modified collision rules, the energy of the
system is given by

E=m C
particles

v2
i

2
+G C

rotors

w2
a

2
. (3)

Thus, all statistical mechanics calculations for this system coincide
with those of a system consisting of a two dimensional ideal gas plus a
collection of non-interacting free rotors. Hence, a first test for the system
is to verify that it equilibrates to a state in which its statistical properties
are indeed those predicted by equilibrium statistical mechanics. In particu-
lar, in microcanonical simulations, the particle velocities should reach
Maxwellian distributions at a uniform ‘‘temperature’’ consistent with the
equipartition theorem. (22) These temperatures should also characterize the
distribution of angular velocities of the rotating scatterers. The same
should be true in canonical and grand canonical simulations, where the
temperature and particle density (or, more formally, the chemical potential
divided by the temperature) are now those established by the values of the
baths. Furthermore, the equations of state characterizing ideal gases should
describe the thermodynamics of our system. If any of these tests fails, it
could be argued that the system fails to equilibrate probably due to a lack
of ergodicity. Unfortunately, passing all the tests does not prove that the
system is ergodic. We have not succeeded in showing rigorously that this
system is ergodic. However, these numerical tests are fairly stringent: we
shall see that for the case of an imposed external magnetic field, where
ergodicity is known to be violated, an effect indeed appears in the energy
distribution function of the particles.

3. THERMO-CHEMICAL BATHS

In numerical studies of statistical mechanics systems in general, and in
those on the microscopic origin of macroscopic transport in particular, it is
necessary to define models for the thermodynamical reservoirs in addition
to the dynamics of the system. The design of these reservoirs and the way
these interact with the system, has several subtleties that can produce con-
fusing and, very often, wrong results, as has been pointed out in refs. 23
and 24. In this Section, we explain the design of a stochastic model that
simulates a thermo-chemical bath, which is able to exchange energy and
particles with the system at fixed nominal values for the temperature T and
chemical potential m.
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The heat and matter reservoir is taken to be an infinite ideal gas at
temperature T and density r which is placed in direct contact with the
system being studied. This is achieved by assuming that the wall separating
the system from the reservoir is perfectly transparent to particles impinging
on it from either side. Of course, it is not necessary to simulate explicitly
the infinite ideal gas which acts as the thermodynamical reservoir, instead,
we can implement this set up using the following rules: whenever a particle
of the system impinges on the boundary which separates it from the bath, it
is removed. On the other hand, with a frequency c, particles are generated
at the boundary, with a velocity distribution

Pn(vn)=
m
T

|vn | exp 1 −
mv2

n

2T
2 ,

Pt(vt)== m
2pT

exp 1 −
mv2

t

2T
2 ,

(4)

reflecting the assumption that the bath is an ideal gas (here and in the
following, we take the particle mass and Boltzmann’s constant equal to
one). The choice of T in these equations defines the nominal temperature of
the bath. Moreover, this way of implementing the thermo-chemical baths
also fixes a nominal value for their chemical potential. Again, as the bath is
an ideal gas, the rate c is given by:

c=
1

`2p
r T1/2. (5)

Thus, we can express the chemical potential of the bath in terms of the
parameter c as:

m=T ln 1 l0c

T3/2
2 , (6)

where l0 is an irrelevant constant.
Equations (4), (5), and (6) completely define the algorithm for the

stochastic emission process of the thermo-chemical baths used in the simu-
lations, and allow us to control the chemical potential and temperature of
the walls by varying the rate c and the temperature. These walls were used
for grand canonical simulations in equilibrium and coupled heat and
matter transport simulations in the NSS.

To simulate the canonical ensemble in equilibrium and pure heat flow
in the NSS, diathermal impermeable walls are required. These were
achieved by reflecting each particle that impinged on the wall back into the
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system, with its velocity updated according to the distribution function (4),
which again defines the nominal temperature of the thermal bath.

Finally, in order to perform simulations in the microcanonical
ensemble, insulating walls are required. We have simulated these either by
simply considering that the particles always perform elastic specular reflec-
tion at the boundary, or by having no walls at all and considering periodic
boundary conditions.

A generalized model for thermo-chemical bath, as well as a general
approach allowing to verify the validity of a given procedure for generating
such baths is given in Appendix A.

4. EQUILIBRIUM AND LOCAL THERMAL EQUILIBRIUM

In this section we show that the system described in Section 2 reaches a
well defined equilibrium state for the different equilibrium ensembles. For
each ensemble we place the system in contact with the appropriate wall, as
described in the previous Section. However, as expected, the equilibrium
state that the system reaches does not depend on the particular choice of the
ensemble. Furthermore, when the nominal values for the thermodynamical
quantities fixed by the baths impose a gradient in temperature and/or in the
chemical potential, our model reaches a well defined steady state.

In order to show that our model reaches a satisfactory equilibrium
state we have measured the velocity distribution of the particles P(v) and
the angular velocity distribution of the discs P(w) in a microcanonical
simulation in which the particles undergo specular reflections with the walls
at the left and right extremes of the channel. We have fixed the energy of
the system and distributed it randomly among discs and particles. After
some relaxation time the mean energy per particle is twice the mean energy
per disc, thus satisfying the equipartition theorem. In Fig. 2, the measured
distributions P(v) and P(w) are shown. The solid line is the corresponding
Boltzmann distributions at the expected temperature (T=150 in arbitrary
units). The agreement indicates that both discs and particles have reached a
state consistent with the predictions of equilibrium statistical mechanics.
This agreement also allows us to relate the average energy per particle with
the temperature, which would have been unfounded otherwise.

We have computed the particle density and temperature profiles in
the following way: We divide the channel in R disjoint slabs of width
Dx=L/R. As before, L is the length of the channel in the x-direction. The
particle density, n(x), in each slab is computed as the time average

n(x) dx=
1
T

F
T

0
C
N

i=1
d(x − xi(t)) dt dx, (7)
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Fig. 2. Discs angular velocity distribution P(w) and particles velocity distribution P(v)
obtained in a microcanonical simulation with 30 particles in a channel of length L=30. The
solid lines correspond to the Boltzmann distribution at the expected temperature T=150.

where xi(t) is the position of the i th particle at time t and N is the total
number of particles in the channel that, in the case of a grand canonical
situation, depends on time. The time average is performed after the steady
state has been reached.

Similarly, the time averaged energy density e(x) is computed as

e(x) dx=
1
T

F
T

0
C
N

i=1
Ei(t) d(x − xi(t)) dt dx. (8)

Here Ei(t) is the energy of the ith particle at time t. From (7) we
obtain the particle’s density profile r(x) as the mean number of particles
found in the slab which contains the position x

r(x)=F
Dx

n(x) dx. (9)

The integral in (9) is taken over the domain of the slab that contains
position x. Analogously, the average particle energy E(x) at the slab
containing position x is given by

E(x)=F
Dx

e(x) dx. (10)

With (9) and (10), we calculate the particle temperature profile T(x) as

T(x)=
E(x)
r(x)

. (11)
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Fig. 3. Particle’s temperature profile T(x) for a canonical simulation. The number of par-
ticles was N=30 and L=30. The nominal temperature in both baths was set to same value
T=150. The open circles correspond to the time averaged temperature of the discs.

In Fig. 3, we show the temperature profile obtained in a canonical simula-
tion where both baths were set to the same nominal temperature. The
temperature obtained according to (11) has additionally been averaged
over an ensemble of 500 different realizations. The number of particles was
set to N=30 in a channel of length L=30. We observe that the particles
reach an equilibrium state characterized by a constant temperature along
the channel which coincides with the nominal values of the baths’ temper-
ature. Moreover, the open circles in Fig. 3 correspond to the time averaged
energy of the discs. The agreement of both profiles indicates equilibration
between particles and discs.

In this equilibrium state, the particle’s density profile (not shown),
is also flat. The same behaviour was also obtained in grand canonical
simulations, as was to be expected from the equivalence of the different
statistical ensembles.

Let us finally note the following: we have also performed simulations
involving an external magnetic field. In this case, it is immediately clear
that the system is not ergodic. Indeed, there exist isolated circular orbits
which do not touch any disc. Since particles do not interact directly, any
particle originally on one of these orbits will remain for ever. Similarly, this
set of orbits cannot be reached from initial conditions for which each par-
ticle touches one disc at least once. Of course, for small fields, the orbits
that do not touch any scatterer only occur when the particle’s kinetic
energy is low, but since the particles can exchange energy with the discs, the
kinetic energy of a particle can come arbitrarily close to zero, and there will
be regions that become unreachable for this particle. There is thus a true
lack of ergodicity for this system for arbitrary (non zero) magnetic fields
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Fig. 4. Particle’s energy distribution obtained from a microcanonical simulation with an
applied external magnetic field. The magnitude of the field B is such that qB/mc=10, where q
and m are the electric charge and mass of the particles respectively and c is the speed of light.
The lack of low energy particles is evident. In the inset, P(E) is shown on a larger energy
domain.

and at all temperatures, although the effect becomes weaker as the field
decreases. We have plotted in Fig. 4 the distribution of particle energies in
the microcanonical ensemble and clear deviations from the Boltzmann dis-
tribution are observed. This comes as an indication that the tests we have
applied should disclose a lack of ergodicity in the system without magnetic
field if such were present.

We now turn to the more interesting out of equilibrium situation. In
these simulations we connect the two ends of the system with two different
baths, each of which has given values of the chemical potential and the
temperature. To drive the system out of equilibrium, the nominal values of
the temperatures and chemical potentials of these baths are set to differ by
fixed amounts. Under these conditions, the system is allowed to evolve
until a non-equilibrium steady state (NSS) develops. In Fig. 5, we show
results for a typical simulation; the profile corresponds to the average
energy per particle for discs and particles obtained in a channel of length
L=30. The temperature difference of the baths was set to DT=20 around
a central value T=150, with a chemical potential difference of D(m/T)=
−0.2. The profile of the average energy per particle is linear and coincides
at the boundaries with the nominal baths’ temperature. As in equilibrium,
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Fig. 5. Temperature profile T(x) with temperature and chemical potential gradients. The
nominal values for the baths’ temperature are T0=140 and T1=160 with an end-to-end che-
mical potential difference of D(m/T)=−0.2. The mean number of particles was % 25.2 in a
channel of length L=30. The open circles correspond to the mean kinetic energy of the scat-
terers.

in the steady state discs and particles locally equilibrate to the same value
of the local mean energy per particle, giving a first indication of the
establishment of LTE. As we will show further on, we will be justified in
identifying the mean kinetic energy per particle with the local temperature.

We now turn to the verification that LTE holds for our system. The
assumption of LTE consists in the following: in every ‘‘infinitesimal’’
volume element one can define thermodynamic variables in the usual way
and these are related to each other through the relations which hold for the
system at equilibrium. It should be emphasized from the outset that this
assumption is never exact: there always exist corrections of the order of the
gradients imposed on the system. However, by choosing sufficiently small
gradients it is always possible to reach a situation in which a definition of
the temperature and density variables as if the volume element was in equi-
librium, leads to reasonable values for the local chemical potential. Let us
first discuss the issue of defining the temperature: in thermal equilibrium it
is well known that the particle energies have a Boltzmann distribution. We
may therefore define temperature as the parameter characterizing this dis-
tribution, arguing that temperature is ill-defined if the distribution is not
Boltzmann. To this end we have computed the energy distribution of the
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Fig. 6. Semi-logarithmic plot of the particle’s energy distribution Px(E) at different posi-
tions along a channel obtained from the simulation described in Fig. 5. The different curves
correspond to a fit to a Boltzmann distribution for each position. From these fits, we obtain
the temperatures: T=142.69 at x/L=0.1333 (circles), T=149.70 at x/L=0.4666 (squares),
and T=158.69 at x/L=0.9333 (triangles). The curves have been re-scaled for clarity.

gas of particles P(E; x) as they cross a narrow slab centered at some posi-
tion x. In Fig. 6, we show (in symbols), the results for P(E; x) measured at
three different positions for the same simulation described in Fig. 5. At
each position the distribution P(E; x) is consistent with the Boltzmann
distribution, thus indicating that the gas of particles behaves locally as if it
was in equilibrium at some temperature T(x). If we determine the temper-
ature T(x) by a fit of P(E; x) to the Boltzmann distribution and compare
these values with the mean energy per particle profile of the system shown
in Fig. 5, we see in Fig. 7 that T(x) coincides with the mean energy of the
particles measured locally at the position x. Thus, in the steady state, a
local Boltzmann distribution is established. Therefore, the identification of
the mean energy per particle with the local temperature in this model is
justified.

In Fig. 8, we now compare the dependence on x of the quantity
ln(r/T) with a linear profile between the nominal values of m/T in the
thermo-chemical baths for the same simulation. The agreement between
both curves (the profile of ln(r/T) has been shifted for comparison), indi-
cates that Dm/T=D ln(r/T), supporting the fact that the gas of particles
inside the channel behaves locally as an ideal gas. By this we mean that the
relation between the chemical potential, the density and the temperature
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Fig. 7. Temperature profile of Fig. 5 compared with the temperatures (open circles)
obtained from the fit to the Boltzmann distribution of P(E; x) shown in Fig. 6.
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Fig. 8. The quantity ln(r/T) (solid line) as a function of the position x computed from the
density and temperature profiles obtained in the simulation described in Fig. 5. The dashed
line corresponds to a linear profile of the chemical potential m/T joining its nominal values in
the baths as obtained from (6). The solid line has been shifted from its obtained numerical
value for a better comparison.
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Fig. 9. Window average of the deviation from the Maxwell distribution given in terms of the
ratio C(vx)={P(vx) − P(−vx)}/P(vx) for a simulation with D(m/T)=−0.06 and T constant
in a channel of length L=30. In the Inset, the original result for C(vx) is shown.

for an ideal gas in equilibrium holds good locally to an excellent approxi-
mation in the NSS under study.

There is, however, an obvious discrepancy: since the NSS generally
carries a non-zero particle current, it is clear that the average velocity is
non-vanishing, thereby contradicting the Maxwellian distribution for the
velocities. This is shown in detail in Fig. 9 where the deviation from the
Maxwell distribution given in terms of ratio C(vx)={P(vx) − P(−vx)}/
P(vx) is plotted. The systematic positive value of C(vx) is an indication that
the average velocity is greater than zero. (25) This velocity, however, is pro-
portional to the particle current, and hence to the gradients. Since these
must be assumed small for LTE to hold, it is a small effect, which vanishes
in the relevant limit. At this point, it is worthwhile to make the following
point, when one states that a model such as that defined in ref. 11 does not
satisfy LTE, it means that the deviations from LTE do not decrease as the
gradients. In that case, for example, they only decay as the imposed tem-
perature difference goes to zero, which in the thermodynamic limit is a
much more stringent condition.

5. NORMAL TRANSPORT AND ONSAGER RECIPROCITY

RELATIONS

Having shown that we can assign an unambiguous meaning to local
thermodynamical quantities in the non equilibrium steady states reached by
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the system, we can now study the transport properties of our systems, and
whether these comply with the predictions of irreversible thermodynamics.

From the general theory of irreversible processes, to linear order, the
heat and particle currents Ju and Jr can be written as follows (see, e.g.,
ref. 26):

Ju=LuuN
1
T

− LurN
m

T
,

Jr=LruN
1
T

− LrrN
m

T

(12)

and the Onsager reciprocity relations read in this case

Lur=Lru. (13)

We now wish to show a central feature of our model: namely that its
transport properties are normal, meaning that the various transport coeffi-
cients appearing in (12) do not depend on the length of system, and are
thus well defined in the thermodynamical limit. In Fig. 10 we show the
dependence of the currents on the length L of the system, for a typical
realization, in which we keep the differences L NT and L Nm/T fixed as we
vary the system size. The 1/L dependence observed confirms that transport
is normal.

In order to obtain the value of the coefficients in (12), it is enough to
perform two simulations: Fixing the value of NT and setting N(m/T)=0
yields Luu and Lru from the direct measurement of the energy and particle
flows, while setting NT=0 and fixing N(m/T) gives Lur and Lrr. We have
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Fig. 10. Size dependence of the heat and matter currents for simulations with a fixed tem-
perature difference, DT=20, and m/T constant. The dotted lines corresponds to 1/L scaling.
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Fig. 11. Particle’s temperature profile for a simulation where the quantity m/T is kept con-
stant. The nominal values for the baths’ temperature are T0=145 and T1=155 in a channel of
length L=30. In the inset, the profile of m/T as calculated from (6) with l0=1 is shown to
corroborate its constant value along the channel.

performed simulations with temperature and chemical potential differences
up to 20% of the minimal nominal values at the walls, and in all cases we
have found normal transport consistent with (13).

In Fig. 11, we show the particle’s temperature and chemical potential
profiles obtained from a simulation with constant m/T and a temperature
difference of DT=10 around T=150 in a channel of length L=30
averaged over 470 realizations. After the steady state has been reached, we
found that both a heat current and a particle current were driven by the
temperature gradient. From (12) we obtained the following values for the
Onsager coefficients:

Luu=(0.7710 ± 0.0050) rT5/2

Lru=(0.1271 ± 0.0017) rT3/2.
(14)

From the complementary simulation (see Fig. 12), where temperature
is kept constant at T=150 and a chemical potential gradient is imposed
with D(m/T)=−0.06 we obtained

Lur=(0.1272 ± 0.0048) rT3/2

Lrr=(0.1030 ± 0.0020) rT1/2.
(15)
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Fig. 12. Profile of the quantity m/T as calculated from (6) with l0=1 for a simulation
where the nominal values of the baths’ temperature are set to the same value T=150 with an
end-to-end chemical potential difference of D(m/T)=−0.06 in a channel of length L=30. In
the inset, the particle’s temperature profile is shown.

In (14) and (15) we have written the explicit dependence of the
Onsager coefficients on the particle’s density r and temperature T. The
temperature dependences arise from simple dimensional analysis given the
fact that the system is homogeneous in energy, or equivalently, that it has
no proper time scale. The same cannot be said of the density, but the
obtained linear dependence shown in Fig. 13, at least in this range of
density values, is not too surprising.

The obtained values for the symmetric coefficients Lru and Lur confirm
(13) to within our numerical accuracy.

As a consistency check, we have also studied a ‘‘canonical’’ situation,
in which we suppressed absorption and emission of particles at the walls
while still allowing heat exchange. In this situation there is no flow of
matter in the steady state. The relationship between heat flow and temper-
ature gradient becomes Ju=o NT, with o given by the following expres-
sion:

o=
LuuLrr − LurLru

T2Lrr

. (16)

This relationship was found to hold to good accuracy, thus confirming the
validity of our ‘‘grand canonical’’ simulations by which the L’s were
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Fig. 13. Density dependence of the particle Jr and heat Ju currents. Each symbol in these
plots correspond to the averaged fluxes obtained from a simulation with constant m/T and a
temperature gradient for which T0=145 and T1=155 in a channel of length L=30. The lines
correspond to linear fits.

evaluated. We remark that the coupling between the two currents in the
NSS is non-trivial in the following sense: in a ‘‘canonical’’ simulation, the
simplest assumption for the dependence of the density on the position is
that the trajectory of each particle covers the sample uniformly. Then the
local temperature merely determines the speed at which the orbit is being
traversed. This would imply that in such a situation, the particle density
should scale inversely with the average velocity, that is

r(x) T(x)1/2=const. (17)

In terms of the transport coefficients defined in (12), (17) is equivalent
to Lru=(d+1) TLrr/2, where d is the dimension of the system. This rela-
tion corresponds to a system for which all transport arises from uncorre-
lated Markovian motion of the particles, as in the Knudsen gas. (20)

However, (17) does not hold in our system as we always find a small but
systematic spatial variation in this quantity, the size and sign of which
depend on the value of g. Thus, our system cannot be accurately described
in such a simple manner.

Despite the fact that the dynamics of the system is not ergodic when
an external magnetic field is applied, we have performed systematic simu-
lations for several values of the magnetic field. In particular, we have
measured both the matter and the energy currents appearing in the direc-
tion perpendicular to the applied thermodynamical gradients (the so-called
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Righi–Leduc effect, which is the thermal analog of the Hall effect). (26) Even
when a magnetic field is applied, the existence of the up-down symmetry in
the system makes the dynamics equivalent to a situation where time-rever-
sal symmetry holds. Due to this situation we are not able to verify the
validity of the Onsager–Casimir relations which are the generalization of
the Onsager relations when time-reversal symmetry is broken. Nevertheless,
we have verified that all cross L-coefficients satisfy the Onsager relations to
within numerical accuracy. The validity of the Onsager–Casimir relations
deserves further investigation.

6. GREEN-KUBO FORMALISM

Another interesting question we are able to address with our system is
whether the Green–Kubo relations hold. These relate the phenomenologi-
cal collective transport coefficients with the equilibrium time correlation
functions of microscopic dynamical variables.

As finite size effects limit the range of validity of the Green–Kubo
relations, we begin by presenting a derivation of these relations which is
appropriate to our finite length system. (27) Starting from the phenome-
nological transport equations (12), and using the fact that the gas of par-
ticles is an ideal gas, we express (12) in terms of the gradients of the energy
density u and particle density r:

Ju=
1

rT
1Lur −

Luu

T
2 Nu+

1
r
1Luu

T
− 2Lur

2 Nr,

Jr=
1

rT
1Lrr −

Lru

T
2 Nu+

1
r
1Lru

T
− 2Lrr

2 Nr.

(18)

As the analysis is restricted to the linear regime, the factors of r and T
appearing in the coefficients of the gradients are taken as constants. Using
energy and mass conservation, we obtain from (18)

“

“t
1 u

r
2=AN2 1 u

r
2 , (19)

where the matrix A is the matrix of coefficients whose elements can be
readily identified from (18).

Applying a Fourier transform in space to (19) we obtain

1 ûk(t)
r̂k(t)

2=e−tk2
A 1 ûk(0)

r̂k(0)
2 , (20)
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where ûk(t) and r̂k(t) are the k Fourier components of u(x, t) and r(x, t)
evaluated at time t. Now we take the exterior product of (20) with the
vector (ûg

k (0) r̂g
k (0) and average over the ensemble of equilibrium realiza-

tions to obtain

Ck(t)=e−tk2
AUk0. (21)

The matrices Ck(t) and Uk0 consist of correlation functions of the densities
given by

Ck(t)=1Oûk(t) ûg
k (0)P Oûk(t) r̂g

k (0)P
Or̂k(t) ûg

k (0)P Or̂k(t) r̂g
k (0)P

2 (22)

and

Uk0=1 O|ûk(0)|2P Oûk(0) r̂g
k (0)P

Or̂k(0) ûg
k (0)P O|r̂k(0)|2P

2 . (23)

The above correlation functions were derived explicitly as forward
time correlation functions; however, as they pertain to the stationary state
of the system, we can extend them backwards in time as even functions.
Having done this, the Fourier transform in time of (21) yields

C̃k(w)=
2k2

A2k4+w2 AUk0. (24)

If we use again the continuity equations we can express the matrix C̃k(w) in
terms of time correlations of the energy and mass fluxes as

C̃k(w)=
k2

w2 J̃k(w), (25)

where the matrix J̃k is given by

J̃k(w)=1 C̃kJuJu
(w) C̃kJuJr

(w)
C̃kJrJu

(w) C̃kJrJr
(w)

2 . (26)

and C̃kJaJb
(w)=OJ̃ka(w) J̃kb(−w)P are flux correlation functions in the k-w

space. Inserting (25) into (24) we obtain

J̃k(w)=
2w2

A2k4+w2 AUk0. (27)
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In the limit k2
Q 0, the relation in (27) becomes independent of k and w:

A=1
2 J̃k(w) U−1

k0 . (28)

However, for finite k, the limit attained by taking w Q 0 yields J̃k(w)=0.
In (28) the Onsager coefficients are expressed as a function of correlation
functions of energy and particle fluxes and the static correlation functions
of the densities. Furthermore, from the equilibrium statistics of the system
for the energy and particle distributions of the gas of particles, the matrix
Uk0 can be explicitly written as

Uk0=12NT2 NT
NT N

2 . (29)

where N and T are the number of particles and temperature of the gas
respectively.

Finally, inserting (29) into (28) we obtain a compact expression for the
Green–Kubo relations for the Onsager coefficients

Lab=
1

2L
C̃kJaJb

(w) (30)

for a, b={ur}. Here we have used that rL=N.
In order to obtain a value for the Onsager coefficients from the

Green–Kubo formulas of (30) we measured the equilibrium correlation
functions of spatial Fourier components of the energy and particle
currents. To this effect, we performed the measurements in a channel
composed of L=120 unit cells. These measurements were done in micro-
canonical simulation with periodic boundary conditions, as it is clear that
transport coefficients vanish in the static limit if the boundary conditions
are reflecting. Also, the above relations were obtained strictly as the limit
of k Q 0, we therefore worked at small finite values for the wave number k
at frequency w, which corresponds to the situation in which (27) is applic-
able. Note that the usual way of evaluating the diffusion constant by
integrating over the current correlations in the periodic case, which corre-
sponds to having w small and k strictly equal to zero, does not carry over
in a straightforward way when the particles are interacting, as is the case in
our system.

The periodic microcanonical simulation was performed at an energy
corresponding to a temperature T=150 with N=658 particles. The par-
ticles and discs were set up in an equilibrium state, and we allowed the
system to further equilibrate by itself before we started the measurements.
The energy and particle flux correlation functions were obtained as follows:
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We measured at each of the n=1...L cells the energy Jnu(t) and particle
Jnr(t) currents as a function of time. They were measured at discrete values
of time with Dt=0.005 (which corresponds to approximately a third of the
typical time required to traverse the shortest collision path in the system).
From these, we obtained the k Fourier component of the fluxes as

Jkr(t)= C
L

n=1
e i2pkn/LJnr(t) (31a)

Jku(t)= C
L

n=1
e i2pkn/LJnu(t). (31b)

From a time series of 4 × 107 data, approximately equivalent to 106

times the mean free flight time, we obtained the time averaged Fourier
component of the energy and particle flux time-correlation functions

CkJaJb
(t)=OJka(t) Jg

kb(0)Pt. (32)

Finally, we performed the time Fourier transform of these quantities. In
Fig. 14 we show the plots of the correlation functions CkJaJb

(w), as func-
tions of w for values of k=1 and 10. These plots show that at low
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Table I. Onsager Coefficients Calculated From the Green–Kubo Formulas (30)

Compared with Those Values Obtained Previously from Direct Measurements

Green–Kubo Gradients

Lrr 0.1050 ± 0.003 0.1030 ± 0.002
Lru 0.1276 ± 0.0016 0.1271 ± 0.0017
Lur 0.1276 ± 0.0016 0.1272 ± 0.0048
Luu 0.7920 ± 0.012 0.7710 ± 0.005

frequencies the correlations functions tend to zero, in agreement with (27).
However, there is a clear plateau in the plots corresponding to the regime
in which the Green–Kubo relations hold. At higher frequencies, the curves
again deviate from the plateau. This is due to the fact that these high
frequencies correspond to times that are shorter than typical collision
times, for which the diffusive transport assumptions used to derive (27) no
longer hold. Taking the plateau values for the correlation functions, which
are essentially independent of k and w, we can compute the Green–Kubo
predictions for the Onsager coefficients using (30). In Table I, we summa-
rize the values obtained for the different Onsager coefficients and compare
them with those obtained previously at this temperature and density.

An interesting issue involving the linear-response of the system is the
macroscopic equivalence between transport processes driven by thermo-
dynamical forces (due to gradients in thermodynamical quantities) and
those driven by real forces (like externally applied fields).

It has been argued by van Kampen (28) that the linear response theory
derivation of Green–Kubo formula for the electrical conductivity is not
correct as the response of the microscopic trajectories to an applied electric
field can not be taken as linear (see also refs. 29 and 31). It has been argued
by Visscher, (29) however, that a difference may exist between the case of
mechanical forces, for which van Kampen’s objection might hold, and
thermodynamical forces such as temperature and chemical potential gra-
dients, for which linear response should provide correct answers. In order
to test this point, we performed simulations for our system in an electric
field (all particles having the same charge and no interaction) and
compared this with the result of the corresponding gradient in chemical
potential.

At the level of the Green–Kubo relations the equivalence follows
directly from the linear response results for a chemical potential gradient or
an applied electric field: Both are related to the autocorrelation function of
the particle current when all particles have the same charge, which is the
case in our system.
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In order to test these ideas we have performed two complementary
simulations: In a first simulation we impose a chemical potential gradient
at constant temperature. In a second simulation both temperature and
chemical potential are constant and an external uniform electric field is
applied to the system in which the particles now carry a unit electric charge
q. To compare the macroscopic flows obtained in these simulations, the
magnitude of the electric field E is fixed to

Dm=qEL, (33)

so that, the work done by the electric field in taking a particle from one
side of the channel to the other is the same as the chemical potential
difference. In (33), L is the size of the system.

In Fig. 15, the temperature profile of both simulations is compared.
When the electric field is applied (Fig. 15a), the temperature in the bulk of
the system increases due to the internal dissipation of the work done by the
field. This is the well known Joule heating effect. (26) In this case, we have
checked that the dependence of the increment of temperature in the bulk
DT is quadratic in the field and observed that it holds even far beyond the
linear regime. In the case of an imposed chemical potential gradient
(Fig. 15b), the temperature profile appears to be flat, indicating that in this
case no effect equivalent to Joule heating is present.
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Fig. 15. Temperature profiles obtained from a simulation at constant T=150 and mean
number of particles N ’ 41.2 in a channel of length L=30 obtained (a) from a simulation
with constant m and a applied electric field of magnitude E=0.5 and (b) without electric field
and an imposed chemical potential gradient of N(m/T)=0.1/L. The circles correspond to the
averaged kinetic energy of the discs for the respective simulation. The dashed line is the
expected value for the profile.
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Fig. 16. Profiles for the quantity m/T minus the expected profile m0/T obtained from the
simulations described in Fig. 15 with (a) an applied electric field and (b) with an imposed
chemical potential gradient.

We have also measured the particle density profile and obtained the
profile for the quantity m/T computed using the relation (6) in both cases.
These are shown in Fig. 16a for the case of an applied electric field and in
Fig. 16b for an imposed chemical potential gradient. In case (a) the chemi-
cal potential is flat since we are not taking into account the electric contri-
bution. In case (b) the profile is linear and shows quadratic deviations from
linearity similar to those observed for the temperature profile in case (a).
This is shown in the inset of Fig. 16b where we subtracted the theoretical
linear m/T profile.

Finally, for the heat and matter flows we have obtained for the case of
an applied electric field

Jr= − 0.00829 ± 0.00006

Ju= − 1.59 ± 0.02,
(34)

and for the case of an imposed chemical potential gradient

Jr= − 0.00829 ± 0.00008

Ju= − 1.59 ± 0.04.
(35)

Thus, the fluxes obtained in both simulations corroborate our initial
expectations within the numerical accuracy.
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7. RATES OF ENTROPY PRODUCTION AND PHASE SPACE

VOLUME CONTRACTION

It is generally argued that stationary states are characterized by
minimal rate of entropy production. In general, this rate has been at the
focus of considerable interest. In particular, in recent work on thermo-
stated systems, the average rate of phase space volume contraction has
been identified with the rate of entropy production. (5–8, 30, 31) While this work
is certainly of considerable interest, it is vital to understand how such
claims might generalize to purely Hamiltonian systems, for which phase
space volume is rigorously conserved, at least in the fine-grained sense, due
to Liouville’s theorem. Our system should be well-suited to this purpose,
since its dynamics is quite transparent and its equilibrium behaviour is trivial.

In our system, changes in phase space volume can only occur at the
boundaries, due to the conservation of phase space throughout the internal
dynamics (note that the collision rules (1) are volume preserving). At the
thermodynamical level of description, what occurs at the boundaries is that
the incoming and outgoing particles give rise to variations in the entropy of
the system. These can be calculated as follows: let us denote by T1 and T2

the two temperatures and by m1 and m2 the two chemical potentials at
either end of the system (once again, due to LTE there is a local ‘‘tempera-
ture’’ and ‘‘chemical potential’’ in the stationary state of the system).
A particle entering at one end of the system therefore contributes to the
change in entropy S by changing both the local energy per unit volume and
the local particle density. Since, as follows from the assumption of LTE,
the local thermodynamical variables are connected to each other in the
usual way, the total increase in entropy due to the creation and annihila-
tion of particles at the boundaries is given by

DS= C
2

i=1

1 1
Ti

(DU)i −
mi

Ti
(DN)i

2 , (36)

where i can take the values 1 and 2 for either end. Due to stationarity,
however, it is clear that

(DN)1= − (DN)2=jr Dt

(DU)1= − (DU)2=ju Dt.
(37)

Putting (37) into (36), one obtains the expression for the rate of
production of entropy:

dS
dt

=L 5− juN
1
T

+jrN
m

T
6 . (38)
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Using (12), and the positive definiteness of the matrix of transport coeffi-
cients Lab, one finds that the r.h.s of (38) is always negative: on the whole,
entropy flows out of the system through the boundaries. This can be
interpreted in two complementary ways. First, if one insists in interpreting
the entropy as a measure of the available phase space, one might attempt
to identify the changes in phase space volume which can occur at the
boundaries with the loss of entropy calculated above. Such identification
leads to the conclusion that the system has an ever contracting phase space
volume, so that it eventually ends up on an invariant set of measure zero.
This recalls various findings on the dynamics of reversible thermostated
systems. Indeed, several people (31–34) have found that the invariant measure
for such systems is singular with respect to Liouville measure. Similarly, for
systems in which the bulk dynamics conserves volume (such as coupled
baker’s maps (36)), the invariant measure in an out of equilibrium steady
state is found to become singular in the limit of infinite system size. Con-
firmation of such scenario in our system seems to be amenable to numeri-
cal test, but this is not the case: due to its rather high dimensionality, sin-
gularities of the support of the steady state measure, if present, would be
extremely difficult to observe, if not impossible. Therefore, even if we could
connect entropy production, say, with some kind of escape rate (as pro-
posed by Breyman and others (37)), it is not at all clear how to measure such
a quantity in even so simple a model as ours. Whether truly low-dimen-
sional systems exist, for which such quantities are readily accessible and
which also exhibit LTE and normal transport, is an interesting open problem.

Another interpretation of (38) is the following: in the stationary state,
because we are in fact approximately in a state of thermal equilibrium in
every volume element, we may think that at least the thermodynamical
entropy, interpreted as a coarse grained phase space volume, will remain
constant in the steady state. But if, as claimed in (38), an amount of entropy
leaves the system each unit of time, then an equivalent amount of entropy
must be produced inside the system. Such an interpretation might then justify
the interpretation of the r.h.s of (38) as minus the rate of entropy production,
in conformity with the results stated for reversible thermostated systems.

To make such an identification plausible, we need a definition of
the entropy out of equilibrium. It is well-known that in the general case
such a definition poses formidable problems. However, since our system
is an ideal gas but little perturbed from equilibrium, it is possible to use
Boltzmann’s expression for an entropy density per unit volume in terms
of the one-particle distribution function f(x, v; t), defined by

s(x)=−F dv f(x, v; t) ln f(x, v; t) (39)
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From this one may give an elementary expression for the rate of entropy
production through the following considerations. Due to LTE, the sta-
tionary distribution f(x, v) is given by a local Maxwellian

f(x, v)=r(x)[b(x)/(2p)]1/2 exp[ − b(x) v2/2]+df(x, v) (40)

where df(x, v) is a correction term of the order of the imposed gradients,
which accounts for the currents in the system. As shown in Fig. 9 such a
correction, while small, can be observed in our system. It then seems
reasonable to divide the time variation of f(x, v) into a convective part
given by − vfx plus a collisional part, of which we need say nothing. In this
case, we may define the entropy current density as follows

js= − F dv vf(x, v) ln f(x, v) (41)

= − F dv v df(x, v)[ln f(x, v)+1]. (42)

Inserting (40) into (42) yields

js=−
m

T
jr+

1
T

ju. (43)

In the stationary state, the local rate of entropy production is given by
the divergence of the entropy current. If one takes it as given by (43),
we obtain again the rate of entropy production given by the standard
expression, this time with the correct positive sign.

8. CONCLUSION

We have introduced a simple model system characterized by reversible
Hamiltonian microscopic dynamics, the equilibrium properties of which are
those of an ideal gas when viewed as a thermodynamic system. We per-
formed extensive numerical studies of the system both in equilibrium and
in non-equilibrium steady state. We find that when driven out of equilib-
rium, the properties of the system are consistent with the hypothesis of
local thermal equilibrium, that is, in the stationary state, one finds a local
Boltzmann distribution for the energies, leading therefore to an unam-
biguous definition of the local temperature, chemical potential, etc. In this
situation its transport properties are found to be entirely similar to those of
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realistic interacting many particle systems: it exhibits coupled mass and
heat transport and the two cross transport coefficients satisfy Onsager’s
relations. When time reversal invariance is broken by means of an applied
constant magnetic field, the appropriate generalizations of the Onsager
relations hold. This is the case even though this system turns out not to be
ergodic. Furthermore, we find extremely satisfactory agreement between
the values of the transport coefficients as deduced from the equilibrium
dynamics via the Green–Kubo formulas and those obtained via direct
simulation. A final result of interest is that we were able to show equiva-
lence between an applied electric field and a chemical potential gradient.
This result, while a straightforward consequence of linear response, does
not appear at all obvious from the microscopic point of view. It may
therefore be considered as a further confirmation of the validity of the
linear response formalism

The fact that all these features are present in such a simple model,
suggests that it may serve as an ideal framework to gain insight of how
macroscopic transport phenomena arise in real systems. The model is also
well suited to test theories for the description of systems in out of equilib-
rium states. Among these, a study of the Cohen–Gallavotti theorem,
perhaps along the lines of ref. 42, might be very interesting. Also, issues
linked to those involving entropy production discussed in the section 7, in
particular the question of characterizing the invariant measure of the sta-
tionary state appears very challenging.

Finally, extensions to more complicated systems can also be con-
sidered. By varying the value of the moment of inertia of the rotors one can
study transport in heterogeneous structures, such as junctions, layered
systems, etc. Other extensions could include mixtures of scattered particles
with different masses. For all these extensions, most if not all of the equi-
librium properties are straightforward, and theories for the phenome-
nological behavior of such systems can be carefully tested.

APPENDIX A: VARIOUS POSSIBLE THERMO-CHEMICAL BATHS

In this appendix we present a short discussion of Markov processes
that can be used to generate a canonical or grand canonical ensemble.
A fairly general Markov process combined with a Hamiltonian dynamics
satisfies the master equation

“trN(x)={HN, rN}+C
NŒ

F W(N −N; x −x) rNŒ(x −) dx −

− rN(x) C
N ] NŒ

F W(NN −; xx −) dxŒ. (A.1)
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Here N is the number of particles, x is an abbreviated notation for the
vector (p, q) and rN(x) is the probability density of being at the phase
point x having altogether N particles. The W(NN −; xx −) are the transition
rates of going from a phase point x with N particles to a phase point x −

with N − particles. If we are looking for rates such that they generate, say,
the grand canonical ensemble with a given temperature and chemical
potential, it is sufficient that they satisfy the detailed balance condition

W(NN −; xx −)
W(N −N; x −x)

=exp[bm(N − N −) − b(HNŒ(x −) − HN(x))]. (A.2)

Let us now assume that the stochastic part of the dynamics is limited to the
case in which x belongs to a small subset C of the full phase space, other-
wise the dynamics is purely Hamiltonian. This corresponds to the case of
stochastic walls treated in this paper. Assume further that, as in our model,
the Hamiltonian in C is one-particle only, say a pure kinetic energy term.
Assume finally that the only changes we consider will be the introduction
and destruction of a single particle. Then the following rates are a solution
of (A.2):

WC(N, N+1)=le−b(v2

2
+m) WC(N+1, N)=l (A.3)

If we want this stochastic process to act as a localized bath in the system,
we take the region C in phase space defined by the condition that at least
one particle is in the region V of the (one-particle) configuration space. The
rates in (A.3) then mean that any particle entering V is annihilated at a rate l.
Further, particles of speed v are being created inside V at a rate le−b(v2

2 +m).
Since such particles may be immediately reabsorbed, however, the problem
of the particle flux emitted by V is not quite straightforward. If V is narrow
(of thickness l) in one dimension around a given hypersurface S, however,
and l is ultimately made to go to infinity as l Q 0, the problem can be
solved as follows. For simplicity, assume that all momenta always point in
the direcion of one of the sides of V. The probability that the particle will
come out at all, conditioned on its having been created at a distance r of
the side from which it must leave V is given by

p(r)=exp[ − lr/vn], (A.4)

where vn is the velocity normal to the surface S. The flux of particles
coming out of V is then given by

le−bv2/2 F
l

0
dr p(r)=vne−bv2/2+bm(1 − e−a/vn), (A.5)
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where a is the limiting value of ll. In the limit in which a Q ., this model
reduces to the one described in the text, which was the one primarily used
in the simulations presented in this paper. The above model can be gener-
alized in different ways: in particular, we may allow for thermalization
without change in the number of particles. A possible candidate for such a
reaction rate is given by

W(NN; xx −)=lŒ exp[ − b(v −2 − v2)/2] d(q − q −), (A.6)

where again the process acts only in the region C described above. This
corresponds to a process in which the particle velocities are thermalized
while leaving their positions fixed, which is, as is readily seen, the algorithm
for thermalization through collisions introduced in the text. In particular,
the case a=0 and a finite rate of the type given is (A.6) leads to the algo-
rithm we used for generating the canonical ensemble.

Various simulations were made with finite values of a in order to test
the method. In equilibrium it was always found that the correct nominal
temperatures and chemical potentials were attained after sufficient time. In
non-equilibrium situations, however, for small values of a, the thermody-
namic parameters of the system can differ from the values imposed by the
baths. In particular, the energy density showed jumps localized in the
vicinity of the walls. These energy gaps have been frequently observed in
simulations of other transport models (10, 12, 24, 38, 39) and were studied in
ref. 41. In our model, they eventually disappear as we increase the value of
a, meaning that the absorption of the wall increases and the particles
(which thermalize the system with the bath) are exchanged more easily.

ACKNOWLEDGMENTS

We acknowledge enlightening discussions with E. G. D. Cohen,
P. Gaspard, T. Gilbert, J. Lebowitz, T. Prosen, and L. Rondoni; as well
as financial support from UNAM-DGAPA project IN112200 and
CONACYT project 32173-E. We also thank the Centro Internacional de
Ciencias AC for hospitality during a part of this work.

REFERENCES

1. F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, arXiv:math-ph/0002052, (2001).
2. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 19:633 (1978).
3. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 28:539 (1982).
4. L. A. Bunimovich and Ya. G. Sinai, Comm. Math. Phys. 78:247 (1980). L. A. Bunimovich

and Ya. G. Sinai, Comm. Math. Phys. 78:479 (1981). P. Gaspard, J. Stat. Phys. 68:673
(1992). J. R. Dorfman and P. Gaspard, Phys. Rev. E 51:28 (1995).

Transport Properties of a Modified Lorentz Gas 229



5. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Comm. Math. Phys.
154:569 (1993).

6. B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Lett. 59:10 (1987).
7. B. Moran and W. G. Hoover, J. Stat. Phys. 48:709 (1987).
8. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Phys. Rev. Lett. 70:2209 (1993).
9. D. MacGowan and D. J. Evans, Phys. Rev. A 34:2133 (1986).

10. S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 78:1896 (1997).
11. G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. Rev. Lett. 52:1861 (1984).
12. T. Prosen and M. Robnik, J. Phys. A:Math. Gen. 25:3449 (1992).
13. L. Rondoni and E. G. D. Cohen, Physica D 168–169:341 (2002).
14. E. G. D. Cohen and L. Rondoni, Physica A 306:117 (2002).
15. D. Alonso, R. Artuso, G. Casati, and I. Guarneri, Phys. Rev. Lett. 82:1859 (1999).
16. A. Dhar and D. Dhar, Phys. Rev. Lett. 82:480 (1999).
17. B. Hu, B. Li, and H. Zhao, Phys. Rev. Lett. 82:480 (1998).
18. T. Prosen and D. K. Campbell, Phys. Rev. Lett. 84:2857 (2000).
19. C. Mejía-Monasterio, H. Larralde, and F. Leyvraz, Phys. Rev. Lett. 86:5417 (2001).
20. L. Reichl, A Modern Course in Statistical Physics (Austin University of Texas Press,

1987).
21. K. Rateitschack, R. Klages, and G. Nicolis, J. Stat. Phys. 99:1339 (2000).
22. Due to the homogeneity in energy of this system there is not no proper energy scale or

equivalently, no proper time scale. Therefore, all energies and temperatures reported in
this work are given in arbitrary units.

23. R. Tehver, F. Toigo, J. Koplik, and J. R. Banavar, Phys. Rev. E. 57:R17 (1998).
24. T. Hatano, Phys. Rev. E 59:R1 (1999).
25. Actually, the obtained average velocity was OvxP=0.004, which is of the same order of

the particle current Jr=0.0027. We have also measured the deviations from the Maxwell
distribution for huge gradients in the chemical potential, far from the linear regime.
There, while the deviations are much clearer, not just in the average velocity but in the
width of the distribution too, their relative value is still of 1%.

26. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York,
1984).

27. We derive Green–Kubo relations for the diffusion coefficients that involve the collective
heat and matter transport we observe. The self-diffusion coefficient, obtained from
the velocity auto-correlation function of a tagged particle diffusing in a fluid of identical
particles coincides with the diffusion coefficient only for systems with noninteracting
particles. See also, Y. Zhou and G. H. Miller, J. Phys. Chem. 100, 5516 (1996).

28. N. G. van Kampen, Phys. Norv. 5:279 (1971).
29. W. M. Visscher, Phys. Rev. A 10:2461 (1974).
30. D. Ruelle, J. Stat. Phys. 85:1 (1996).
31. J. R. Dorfman, An Introduction to Cahos in Nonequilibrium Statistical Mechanics

(Cambridge University Press, Cambridge 1999).
32. G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80:931 (1995); Phys. Rev. Lett. 74:2694

(1995).
33. D. Ruelle, J. Stat. Phys. 95:393 (1999).
34. D. J. Evans, E. G. D. Cohen, D. Searles, and F. Bonetto, J. Stat. Phys. 101:17

(2000).
35. J. R. Dorfman, P. Gaspard, and T. Gilbert, Phys. Rev. E 66:026110 (2002).
36. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press,

Cambridge 1998).

230 Larralde et al.



37. W. Breymann, T. Tél, and J. Vollmer, Phys. Rev. Lett. 77:2945 (1996).
38. S. Lepri, R. Livi, and A. Politi, Physica D 119:140 (1998).
39. K. Aoki and D. Kusnezov, Phys. Lett. A 265:250 (2000).
40. A. Dhar, Phys. Rev. Lett. 86:3554 (2001).
41. K. Aoki and D. Kusnezov, Phys. Rev. Lett. 86:4029 (2001).
42. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95:333 (1999).

Transport Properties of a Modified Lorentz Gas 231


	1. INTRODUCTION
	DEFINITION OF THE MODEL
	THERMO-CHEMICAL BATHS
	EQUILIBRIUM AND LOCAL THERMAL EQUILIBRIUM
	NORMAL TRANSPORT AND ONSAGER RECIPROCITY RELATIONS
	GREEN-KUBO FORMALISM
	RATES OF ENTROPY PRODUCTION AND PHASE SPACE VOLUME CONTRACTION
	CONCLUSION
	APPENDIX A: VARIOUS POSSIBLE THERMO-CHEMICAL BATHS
	ACKNOWLEDGMENTS

